Efficient K-Nearest Neighbor Search in Time-Dependent Spatial Networks
نویسندگان
چکیده
The class of k Nearest Neighbor (kNN) queries in spatial networks has been widely studied in the literature. All existing approaches for kNN search in spatial networks assume that the weight (e.g., travel-time) of each edge in the spatial network is constant. However, in real-world, edge-weights are timedependent and vary significantly in short durations, hence invalidating the existing solutions. In this paper, we study the problem of kNN search in timedependent spatial networks where the weight of each edge is a function of time. We propose two novel indexing schemes, namely Tight Network Index (TNI) and Loose Network Index (LNI) to minimize the number of candidate nearest neighbor objects and, hence, reduce the invocation of the expensive fastest-path computation in time-dependent spatial networks. We demonstrate the efficiency of our proposed solution via experimental evaluations with real-world data-sets, including a variety of large spatial networks with real traffic-data.
منابع مشابه
Towards K-Nearest Neighbor Search in Time-Dependent Spatial Network Databases
The class of k Nearest Neighbor (kNN) queries in spatial networks is extensively studied in the context of numerous applications. In this paper, for the first time we study a generalized form of this problem, called the Time-Dependent k Nearest Neighbor problem (TD-kNN) with which edge-weights are time variable. All existing approaches for kNN search assume that the weight (e.g., travel-time) o...
متن کاملAn Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification
The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...
متن کاملAn Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification
The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...
متن کاملEfficient k-nearest neighbor searches for multi-source forest attribute mapping
In this study, we explore the utility of data structures that facilitate efficient nearest neighbor searches for application in multi-source forest attribute prediction. Our trials suggest that the kd-tree in combination with exact search algorithms can greatly reduce nearest neighbor search time. Further, given our trial data, we found that enormous gain in search time efficiency, afforded by ...
متن کاملEfficient Continuous Nearest Neighbor Query in Spatial Networks Using Euclidean Restriction
In this paper, we propose an efficient method to answer continuous k nearest neighbor (CkNN) queries in spatial networks. Assuming a moving query object and a set of data objects that make frequent and arbitrary moves on a spatial network with dynamically changing edge weights, CkNN continuously monitors the nearest (in network distance) neighboring objects to the query. Previous CkNN methods a...
متن کامل